Tampilkan postingan dengan label rolls royce. Tampilkan semua postingan
Tampilkan postingan dengan label rolls royce. Tampilkan semua postingan

Selasa, 03 November 2015

Sudden Brake Failure in Shadow-era Rolls-Royce and Bentley Motorcars



How do you know the brakes in your Shadow-era Rolls-Royce are safe?  If you are like most people you trust the warning lamps on the dash.  When you start the car and you see the lamps glow, flicker, and go out – you know they work.  Lamps out - brakes safe.  You expect the lamps to warn you if either system loses pressure, so you can stop the car before brake pressure is lost.



Can that system fail?  Last week, I learned that the answer is yes.   Shadow brakes can fail without warning.  I know because we had it happen to a car in our yard.  The only thing that saved the car from crashing into the building was the simultaneous shift into park and stepping hard on the emergency brake.  And when the car stopped we realized we would not have been so lucky if the speeds had been higher – those tricks won’t do much at 60mph.

The next morning we hooked pressure gauges to the test points and read 2,000psi on the rear circuit, but just 1,300psi on the front at idle, rising to 2,000 as the engine sped up.  That puzzled us because the pumps were recently changed, and the accumulators were freshly charged on rebuilt blocks.  Why the low pressure? 

There was no obvious reason the front circuit should have been low.  And an even bigger question remained – how did the brakes fail with those system pressures?  1,300psi at idle is low, but it’s still plenty to stop the car.  And the rear had full pressure all along.  So what happened?  The pressures must have fallen to zero on the test drive, and we were at a loss to how that could have happened.

We did a flow test, which one circuit passed and the other came close.  That didn’t answer the failure either, but it raised a question.  What would account for low flow in a newly rebuilt pump circuit?  We have seen that happen with collapsed lines from the reservoir to pump, but these lines looked good.  

We suspected the answer might lie in the hydraulic reservoirs, located on the left fender well just forward of the firewall.  We started removing the screws that hold the cover in place - something that never happens on most Silver Shadow cars.  Why would you remove the cover?  You can see the fluid through the sight glasses, and you fill through the caps on top. The unit itself is seldom taken apart.  But it should be, as our exploration revealed!


The first thing to check was the intake screens in the reservoir and that is where we found our answer.

Sludge in a Silver Shadow hydraulic reservoir (c) JE Robison Service



What you see in the photo is a solid inch of sludge, and the intake screens are actually collapsed from the force of the pumps trying to suck solid sludge through the fine mesh.  Take a look at this comparison:



You can see how the pump was straining for a long time to pull fluid through those clogged strainers. Intake restriction is surely a cause of pump failure in some of these cars.  And it can get worse - if a pump fails it can seize and damage the pushrod or even the cam. So you can see how this gel issue can turn into major mechanical trouble in addition to the obvious hydraulic problems it causes.

I was shocked to find such a gelled mess of fluid, but the car in question had been stored for 10 years, and a review of online forums reveals quite a few instances of brake fluid gelling in cars and motorcycles during long term storage.  We have actually seen that ourselves, as shown in this photo of what we found in a Jaguar XK120 brake reservoir after being parked 6 years.




The fix for this - on the Rolls - was to remove and clean the reservoir, and replace the screens.   

For the sake of comparison, this is what a disassembled reservoir looks like on a car in our restoration shop:




A restored RR363 hydraulic reservoir from a Silver Shadow (C) JE Robison Service 

After cleaning this car's reservoir, we also replaced the suction lines to the pumps, and thoroughly flushed the system.  But flushing only goes so far.  After running the car 100 miles this is what we found on removing the reservoir top again



As you can see the rear circuit has turned rather dark, and there are little bits of debris accumulating in the tank.  In these cars the rear hydraulic circuit powers the level control, and we have known the rams to build up sludge, some of which seems to be making its way back to the reservoir.  The photos below show the level control circuit on this car, which was a repository for more sludge:





The cure for that: Take apart and clean the level control circuit.  In this car, the level control hadn’t worked, and the owner had said to ignore it. But we could not do that, when we saw how it was polluting the clean fluid in front. We took apart and cleaned both rams, cleaned the valves, and blew clear the lines. In retrospect I see that the level control failure was due to gelled fluid preventing proper operation. It worked once this was done.

So one takeaway from that is that the whole system should be cleaned and serviced, even if the owner does not care about self-leveling.  What seems like a place to economize on service (level control) could well end up a cause of rear circuit brake failure.

The other takeaway is that the reservoirs should be opened up and inspected when these cars receive major brake service, or when they are serviced after long-term storage (more than one winter.)  There is no external sign of sludge in the reservoir, and if you don't open it up and look your first clue may be the total and sudden failure of the system.

This inspection is a nuisance, with 14 screws holding the cap in place, after which the screens and plates have to come off.  And if the reservoir needs to be cleaned you could be into a half-day project.  But do it anyway, in the interest of safety!  The lesson of this car is that the fluid reservoir should be checked before the car is driven.

And when the reservoir is filled, be sure to use the RR363 fluid that's made special for these cars.  Ordinary brake fluid does not have the castor oil lubricant the brake pumps require, and substitution of a different fluid can lead to brake pump wear and premature failure.  That's a failure that's easily avoided - just use the right stuff!  It is ok to top these systems with DOT3 fluid in emergency but if that is done the RR363 should be put back in at the earliest opportunity.

And one final thing – why didn’t the warning lights come on?  In some of these cars the warning lamps are at the end of long dead-end pipe runs.  In this vehicle, the line to the sensor was jammed by gelled fluid, and there was no live connection between the sensors and the fluid they were supposed to monitor. Yet they looked good from outside!  That just shows how appearances can deceive.  Particularly since this car originally had the warning lights lit, and they went out when the car was first started up.

The advice in this article applies to 1965-1980 production Rolls-Royce and Bentley motorcars that use pressurized RR363 hydraulics.  This includes all Corniche, Shadow, Wraith, T Type, and T2 built in that period.




(c) 2015 John Elder Robison
John Elder Robison is the general manager of J E Robison Service Company, celebrating 30 years of independent Rolls-Royce and Bentley restoration and repair in Springfield, Massachusetts.  John is a longtime technical consultant to the Rolls-Royce and Bentley clubs, and he’s owned and restored many fine British motorcars.  Find him online at www.robisonservice.com or in the real world at 413-785-1665

Reading this article will make you smarter, especially when it comes to car stuff.  So it's good for you.  But don't take that too far - printing and eating it will probably make you sick.


Sabtu, 19 September 2015

We Have A Winner! The British Invasion Car Show

At the concours at today’s 2015 British Invasion motorcar show in Stowe, Vermont . . .


Gus & Christine Bjorklund of Chelmsford, MA took 3rdplace in a black 1978 Bentley T2 sedan



Modern Car Society president Jim Facinelli drove all the way from Pennsylvania in his 1989 Silver Spur to take 2nd

1989 Rolls-Royce Silver Spur - Jim Facinelli  (c)2015 JE Robison
We presented John Rando’s 1972 long wheelbase Silver Shadow, for a 1st place win.  As 1st place winner I had an opportunity to speak for a moment and I think the audience was surprised to hear I am autistic and the detail they saw in this vehicle is in part a manifestation of my autistic fixation on motorcars.  I also thanked the car's owner John Rando for his support of us, and making this restoration possible.  It's funny . . . millions of people have read my books and writings on autism but I'll bet that part of my life was unknown to 99% of the people at that show.





There was a very nice 1927 Bentley from Quebec.


Paul and Catherine Stanley’s 1951 Bentley Mark VI took Best in Show, from Gloucester MA




Finally, out on the people’s choice field there were 12 more Rolls-Royce and Bentley motorcars, and two for sale in the corral.






In the Land Rover area my friends David and Shelly Rifken brought their two Land Rover Defenders



My son drove up our 1990 Jaguar XJ-S convertible



And the field was filled with 650 magnificent British cars on a fine early fall day






We had a great time at the how.  It's always good to see our friends from the world of collector cars.  And thanks to everyone at Robison Service and of course my family for making it all possible.

(c) 2015 John Elder Robison
John Elder Robison is the general manager of J E Robison Service Company, celebrating 30 years of independent Land Rover restoration and repair in Springfield, Massachusetts.  John is a longtime technical consultant to the Land Rover clubs, and he’s owned and restored many fine Rovers.  Find him online at www.robisonservice.com or in the real world at 413-785-1665

Reading this article will make you smarter, especially when it comes to car stuff.  So it's good for you.  But don't take that too far - printing and eating it will probably make you sick.

Rabu, 05 Agustus 2015

Inspecting Rolls-Royce and Bentley hydraulic systems


How to test and inspect the brake and hydraulic systems in Shadow and Spirit/Spur era Rolls-Royce and Bentley motorcars.

Disclaimer: This article describes a process whereby a knowledgeable owner can get a good approximation of a car's hydraulic system condition in the field without specialized test tools.  It is not meant to replace the procedures described in the factory workshop manuals. Rather, it recognizes that the workshop manual procedure relies on specialized hydraulic gauges which are unavailable to most owners around the world, and the need to test brakes is more widespread than the proper tools to do it.

1983 Corniche drophead (C) JE Robison

The advice in this article is provided as-is, with no warranty as to completeness.  I've done my best to illustrate a complete procedure but there are inevitably circumstances where a car might experience a hydraulic problem that would be missed by this simplified test, yet found by the factory procedures.  Always use the gauge tests if you can  





One of the more unique features of 1965-1998 Rolls-Royce motorcars is the hydraulic system.  The hydraulic system powers the brakes and the rear suspension’s height control.  These systems are legendary for their complexity and potential for bank-breaking repair costs.  In this essay I'll show you how to check yours out so you can get a sense of what's happening before disaster strikes, and hopefully avoid disaster altogether.

The early version of this system (1965-80) is filled with a derivative of conventional brake fluid (RR363).  RR363 is essentially brake fluid with an added lubricant.  The lubricant is needed for the engine driven pumps. Newer cars (until the advent of the Silver Seraph series) used Castrol hydraulic system mineral oil, or HSMO, which by its nature lubricates the pumps and powers the brakes.  The two fluids are not compatible.  Use of the wrong fluid in a car will cause severe system damage.  All reservoirs are clearly labeled RR363 or HSMO.

RR363 fluid reservoir as used from 1966-1980.  Note warning label and style - a simple steel container, normally painted silver as shown.  Windows to check fluid level are visible on the side.
Mineral oil reservoir (and fill bottle) from a post 1980-Rolls (1995 shown) Style varies by model year but colored warning and symbols are the same. Floats to indicate fluid level via a green dot are visible atop the reservoirs.
The fluid in these systems should be changed annually.  Some owners question the need for this, when their cars are rarely driven.  Here's why it needs to be done:  The hydraulic pumps deliver fluid to accumulators where they compress nitrogen gas under very high pressure.  The fluid is separated from the nitrogen by a rubber barrier, but it is inevitable that some nitrogen will make its way into the fluid.  This forms bubbles, and bubbles in the fluid cause the brakes to pull and act erratically.

Any car that has been sitting a long time is sure to have "funny feeling" brakes for this reason  The cure:  Change the fluid annually.

The system contains two hydraulic circuits that operate in parallel for the brakes.  One of the systems also powers the rear height control.   Hydraulic fluid is stored in reservoirs on the left fender well.  Lines carry the fluid to the hydraulic pumps, which are located in the center top of the engine; under the carburetors or the fuel injection.  High-pressure pipes carry the hydraulic fluid to the accumulators under the motor.  From there excess fluid is returned to the reservoirs.  Braided lines carry the high-pressure fluid to the distribution valve assembly located under the driver seat. 

Rolls-Royce brake distribution valves (all Shadow and Spur era cars similar) under driver seat
A network of steel pipes carries hydraulic fluid to the calipers at each wheel and to the rear suspension and height control.   The rear suspension contains height control valves, shocks, and gas springs that sit above the shocks in the trunk area.

All the pumps, valves, and moving parts are subject to failure.  Calipers rust or leak.  Gas springs and accumulators lose their gas charge.  Metal lines rust and rubber hoses deteriorate invisibly.   A system this complex can only be fully tested by trained people using special tools in a workshop.  However, it’s possible to do a pretty good “quick check” without tools, using the following procedure:

Begin with the vehicle sitting, engine cold.  We start by discharging the hydraulics. Get in the car and slowly but steadily pump the brake pedal 25 times.  Open the hood and check the level in the hydraulic reservoirs. (see illustrations above)  If the level is low, look for leaks (as evidenced by wet spots on the calipers, the hoses, or the engine pumps or accumulators) Turn the key on but do not start the engine yet.  You should see two lights illuminated, identified as Brake 1 and Brake 2.  Depending on the year of the car these may be in an electronic unit between the gauges, in a group of lamps to one side, or by themselves in the middle of the dash.

If you do not see the lamps, or if only one is lit, give the brakes 10-20 more pumps.  If the second light does not come (or if neither come on) on you can assume that warning circuit is broken.  That is a big red flag.  A car whose brake safety lamps are not working is not safe to drive, as it could have total brake failure with no warning. To proceed with testing, start the car.  Watch how long it takes for the lights to go out.  They will typically flicker briefly before extinguishing. If one or both lights do not go out you probably have one or two failed pumps, which is a no-drive fault.  If the lights remain on more than 20 seconds the hydraulic pumps are probably weak.  That's not a no drive fault but it indicates the need for professional inspection and probably service.

Run the car 2 more minutes, shut it off, and turn the key back on.  Begin slowly pumping the brake and note how many pumps before the Brake 1 and 2 lamps illuminate.  If you see the lamps come on (either or both) in 5 pumps of less, the car is not safe to drive.  If the light comes on within 5-10 pumps the car should be driven carefully straight to the workshop. Less than 20 pumps indicates the car has weak accumulators and should be serviced soon.

You want the car to endure 20+ pumps without either light coming on.  That indicates a system with sufficient charge to provide a margin of safety in braking, particularly if the engine stalls at highway speed or on a hill.  If you do not get to 20 pumps before seeing a lamp, in each case, the repair needed would be to replace (Spur) or rebuild (Shadow) the accumulators and overhaul the valve bodies.  After that the system would be bled.

** MAKE SURE THE CAR IS IN A SAFE PLACE FOR THE NEXT TEST.  It may lunge and roll when put into gear.  Be sure nothing is at risk for damage or impact **

Now, while holding the pedal down at the 20th or 21st press, start the engine.  Immediately pop the car into gear - get it in gear within a second or so of starting.  What does the car do?  If it lurches forward and then stops in a few seconds as the brakes grab, there is a problem in the warning circuit.  If the car holds firm and does not move the brakes and the warning lamps are ok, and it's good.

If the car holds 21 pumps the brake accumulators should be good for a few more seasons.  Brand new accumulators may hold 40 or more pumps but any number in that range is safe.  If you want to know the exact count, run the car till the lights go out, give it a few more minutes, and slowly pump till both lights illuminate.  Usually one will come on followed by the other.

Once that is done, let the car run and wait for the brake warning lights lights to go out.  Go to the back of the vehicle and bounce each corner.  If the car is soft and pushes down a few inches with your weight that’s normal.  If it’s rock-hard that is a sign of failed gas springs in the rear suspension.

Sit down on the rear bumper (even better, have two people sit on the bumper) and wait 30 seconds. You should feel the car lift to the original (and visibly correct) ride height.  If it does not lift that’s a sign of problems in the height control.

Take the car onto the road.  Try braking slowly and quickly.  Pay attention to any pulling or diving that may indicate caliper problems or air in the lines.  Look for any pulsation or shudder that may indicate warped or damaged rotors.  Let the car come to a stop on a gentle slope and release the brake.  Make sure the vehicle begins rolling smoothly and the brakes do not drag.

Shut the car off and put it in neutral.  Press and release the brakes a few times.

Finally, put the vehicle on a lift and make sure all four wheels spin freely.  If any wheels drag that may be a sign of caliper trouble.  Next check all the components for leakage.  Look at the reservoirs (top left fender well), the pumps (top of the engine), the main valves and accumulators (under side of the engine), the distribution valves (under driver seat), the brake lines and calipers, and the rear suspension components.
   
Look at the fluid and make sure it looks smooth and uncontaminated.  RR363 (used 1965-1980) should be almost clear; HSMO (used 1980-1998) is dark green.  There should not be any foam, sediment, or sludge visible.  Color should be consistent. 

Look at the rubber hoses to see if they are original.  If your car is more than 10-15 years old I suggest you replace all rubber hoses as they can swell inside, creating invisible failures.  A swollen hose may cause brakes to drag and overheat.  Old hoses are also prone to bursting.

Original Shadow-era brake hoses, overdue for change (C) JE Robison
New style lines and hoses in a restored Shadow (C) JE Robison


If your car passes all these tests you can give yourself and the vehicle a pat on the back.  If you see potential failures, I suggest you find a specialist and get a more thorough evaluation.


If you liked this story, please leave a comment.  And if you want more . . . here are some of my other RR/B essays


Thoughts on buying a used Rolls Royce or Bentley - applies to Silver Cloud and newer series cars

More thoughts on Spur - Spirit - Turbo era car buying

Thoughts on restoration - applies to all cars

Evolution of the RR/B models - Silver Shadow through Arnage/Seraph - original article from the Robison Service website

Inspecting a Rolls Royce or Bentley - Applies to Corniche, Continental, Azure, Turbo R, Mulsanne, Eight, Turbo R, Silver Spur, Silver Dawn, Silver Spirit

More Things to Look For in a 1981-2000 Rolls Royce or Bentley - this is the original article from the Robison Service website

The last Crewe built Rolls Royce convertibles - applies to 2000-2002 final Series Corniche

Repairing convertible top hydraulics - Applies to 1996-2004 Rolls Royce and Bentley Corniche and Azure cars

Head gasket failures in Bentley Turbo cars - applies to Turbo R, Continental R and T, Azure, Arnage

Checking engines after head gasket failure - Applies to all cars

Checking and inspecting Rolls Royce hydraulic systems - all cars after Silver Cloud and print to Silver Seraph. Applies to all Shadow/Spur era vehicles

Case Study - brake failure in a Shadow - Silver Shadow era cars with RR363

Rear suspension gas springs - Applies to all 1981 - 1999 cars prior to Silver Seraph

Changing batteries in seat and ECUs, Applies to 1980s-1990s Silver Spirit / Silver Spur / Mulsanne /Eight / Turbo R

Changing alarm ECU batteries,  Applies to 1980s-1990s Silver Spirit / Silver Spur / Mulsanne /Eight / Turbo R

Servicing Shadow and Spur series brakes - applies to 1966 - 1999 cars after Silver Cloud and prior to Silver Seraph

Alcon racing brakes for Continental and Azure - Applies to all 1990s cars but most particularly to the final series Azure, which had these brakes fitted at the factory - a unique variant

Fixing Power Steering Leaks - applies to 90s cars with the reservoir above the alternator

Questions and answers on collector car storage - Applies to all cars

Evaluating paint - Applies to all cars


John E Robison
JE Robison Service
RROC Tech Consultant

Robison Service has provided independent service, repair, and restoration for Rolls Royce and Bentley owners all over New England for over 25 years. Our company is an authorized Bosch Car Service Center. We also service Mercedes, Jaguar, Land Rover, Porsche, and MINI motorcars. We have flatbed transport throughout the region. We also offer local pickup and delivery for cars in  Springfield, Wilbraham, Longmeadow, Agawam, Westfield, Northampton, and Amherst.